

OBJECTIVES OF PRESENTATION

This presentation will discuss the following topics:

- ◆ Concept and application of Safety Culture
- ◆ Operational surveillance
- ◆ Management of operating activities
- ◆ Management of maintenance activities

QUALITY CULTURE

Framework of practice

- Operating limits
- Operating practices
- Procedures
- Supervision

• <u>Attitude of staff</u>

- Individual awareness
- Knowledge and competence
- Commitment
- Motivation
- Accountability

ONTARIO HYDRO QUALITY PRINCIPLES

- ♦ Define Goals and Objectives
- ◆ Define Roles and Responsibilities
- Specify and communicate Expected Results
- Hold People accountable
- ◆ Ensure People are Trained
- Ensure Information is available
- ◆ Seek and use Relevant Experience
- Plan and control Work
- Use the right Materiel and Processes
- Verify work against Standards
- ◆ Identify and correct Deficiencies
- Control Documents
- Review and improve Management and Work Processes

UNDERSTANDING QUALITY CULTURE

All plant personnel:

- ◆ Know the expectations of their job
- Know why their job is important
- Are committed to professionalism
- Meet the performance standard
- "RIGHT THE FIRST TIME"
- Are proud of quality of their work
- ◆ Feel part of the plant "team"
- Freely give and receive communications
- Are committed to continuous improvement

KEY PRINCIPLE OF QUALITY

Each employee is responsible for

the quality of his performance "

Supervisors and managers

are responsible

for quality within their

area of control

- Operate conservatively
- Do not relax rules in time of crisis
- ◆ Maintain defense in depth
- ♦ Verify actions affecting reactor safety
- If in doubt, stop and ask
- Ensure all actions can stand up to critical scrutiny
- Understand the implications of change
- Do not live with problems
- Determine and correct the underlying cause of problems
- ◆ Keep it simple

- ◆ Call-up system for routine activities
- Equipment testing to ascertain condition
- Equipment calibration program
- Recording system for equipment history
- Review of maintenance documentation

CONDITIONS for OPERATIONAL CONTROL

Ability to operate equipment as required for process control and control system configuration

 Ability to monitor process parameters and system configuration,

Have annunciation to indicate out of spec condition

KEY ITEMS for OPERATIONAL QUALITY

- ◆ Control panels attended at all times
- ◆ Sufficient staff in control room and field
- Routine testing, call-ups, surveillance routinely carried out
- Nuisance and spurious alarms minimized
- Operating instructions and aids kept up to date
- Temporary instructions and modifications minimized and controlled
- Control of plant and equipment maintained
- Control room and field instruments monitored
- All equipment in the field identified
- Safety culture" evident throughout

PROFESSIONALISM IN PLANT OPERATIONS

RELATES TO:

- COMMUNICATIONCOORDINATION
- TEAM WORK
- PERFORMANCE
- ◆ Honesty in all duties and relationships
- Thorough preparation for excellent performance at work
- Assumption of responsibility for own activities : professional and others
- Professional appearance and demeanor
- Respect for dignity of co-workers
- Continuous expansion of technical and plant-related knowledge

CONSERVATIVE DECISION MAKING

means:

All decisions at the plant are made in the direction of maintaining or improving the desired level of safety.

Operational safety margins are not routinely and deliberately reduced

WHY HOUSEKEEPING MATTERS ?

- Creates visible indication of standards at the plant
- Good housekeeping contributes to safe working environment
- Ensures that the plant is in good state of repair and therefore less likely to suffer from unplanned outages
- It's either getting better or worse.
 If there is no program to improve, then conditions will deteriorate

MAINTENANCE POLICY

<u>Preventive</u> : Actions taken on routine basis to prevent equipment breakdown.

- <u>on-condition (predictive) measurement</u> of conditions to analyze and predict equipment performance, so that action can be taken in advance of breakdown.
- <u>periodic</u> action taken on routine basis to prevent breakdown.
- <u>planned</u> maintenance done prior to equipment failure.

Can be initiated by:

- * Predictive maintenance findings
- * Periodic maintenance findings
- * Experience
- * Suppliers recommendation

<u>Corrective</u> : Repair or replacement of equipment which has failed in service.

EQUIPMENT CONDITION

Examples of items to look at:

- Cleanliness
- Equipment Surroundings
- ♦ Lubrication
- Vibration
- ◆ Leaks
- ♦ Temperature
- Protection from environment
- Seals and rubber parts
- Condition of electrical contacts
- Nuts tightened
- Erosion and corrosion
- Use of consumable items
- Observed abnormal condition or operation
- Non-destructive examination

<u>WARNING SIGNS of POOR QUALITY</u> (Maintenance Problems coming)

. .

Time estimates routinely exceeded
Too much rework
• Excessive use of materials
Tools damaged
Low volume of work
Poor housekeeping
◆ Close calls (Accidents)
Poor reporting (Feedback)
Training postponed
Preventive maintenance postponed
Incompetent people assigned
Poor pre-job briefing
20
1

